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Summary

Structures subjected to random excitations with uncertain
system parameters degraded by surrounding environments (a
random time history) are studied. Methods are developed to
determine the statistics of dynamic responses, such as the
time-varying mean, the standard deviation, the autocorrelation
functions, and the joint probability density function of any
response and its derivative. Moreover, the first-passage

problems with deterministic and stationary/evolutionary
random barriersare evaluated. The time-varying (joint) mean
crossing rate and the probability density function of the first-
passage time for various random barriers are derived.

Introduction

Many structures that require high performance or high
reliability and durability often operate under complex
environments including random excitations and random
temperatures. These excitation and temperature variations
not only degrade the material but also cause an additional
randomness in the uncertain material behavior. In addition,
a small variation in the structural shape may have an important
effect on the structural responses. Therefore, the deterministic

structural analysis is not sophisticated enough to quantify the
uncertain structural responses, and the design requirements
cannot be satisfied. For this reason a methodology has been
developed for a probabflistic dynamic analysis of stochastic
strucUu'es degraded by surrounding service environments.
This methodology evolves from the concept of NESSUS
(Numerical Evaluation of Stochastic Structures Under Stress),
which is a probabilistic structural analysis code developed
under NASA's Probabilistic Structural Analysis Methods
Project (Chamis, 1986). The methodology consists of five
parts: (1) random process decomposition, (2) probabilistic

material behavior model, (3) perturbed dynamic analysis of
uncertain systems, (4) the first-order-second-moment method,
and (5) a set of reliability algorithms. The random process
decomposition procedure expresses the random phenomenon
by a set of independent random variables and their respective
characteristic functions. The probabilistic material behavior
model defines the relationship between material properties
(Young's modulus, damping ratio, thermal expansion
coefficient, strength, etc.) and the random phenomena
(temperature, fatigue, etc). The perturbed dynamic analysis
of uncertain systems produces perturbed time histories
(dynamic responses), which are used to determine the response
functions numerically in terms of independent random
variables at each time. The first-order-second-moment
method redefines the limit state function in the normalized



probabilistic space. A set of reliability algorithms are then
used to determine the important response statistics and to
solve the first-passage problems.

This newly developed method is demonslrated by performing
a mmsient analysis of a stochastic structuresubjected to random
excitations under severe random temperature conditions. The
structure is modeled by a single-degree-of-freedom oscillator,

or only the fundamental mode is considered in the dynamics
analysis. The natural frequency of this oscillator, which is a
function of the unceccdn system parameters (geomecy, material

properties, etc.), is randomly degraded by the temperature
process. The excitations can be either stationary or
evolutionary random processes. ,_._ad-order statistics of
any response, such as the time-v_'ying mean, the standard
deviation, and the autocorrelation functions, are determined.
Also, the fiast-passage problems with constant or stationary
evolutionary barriers are evaluated. A random barrier, such
as the uncertain material strength or clearance for maximum

displacement, is composed of its original randomness and of
a variation due to the effect of random temperatureand fatigue.

The probability events in which crossing does or does not
occur at any time are defined in terms of a reliability index
and sensitivity factors from the fn_t-order-second-moment
method. The time-varying mean crossing rate and the joint
mean crossing rate are derived. The probability density
functions of the fn'st-passage time for various random barriers
are determined by two methods. The details of the method-
01087 are explained in this paper. The application of this
methodology to a multiple-degree-of-freedom system in
conjunction with NESSUS is also addressed.

Random Process Decomposition

Fora random process in time, such as load and temperature,
a Karhunen-Loeve expansion is used (Spanos and Ghanem,
1989). This expansion is a representation of the random

process in terms of independent random variables Unand their
associated time-varying characteristic funcfionsfn(O, as shown

inequation(I).

S(t)= S(t)+ ZUnfn(t) (I)
n=l

where S(0 is the mean value of the random process and r is
the number of terms included. The smoother the random

process is, the smaller the number r is.

Probabilistic Material Behavior Model

A generic material behavior model (multifactor interaction
model) (Boyce and Chamis, 1988) is used to synthesize the
variationsofmaterial properties forstructuresoperatingunder
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hostileenvkoments, such as highor cryogenicrandom

temperatureconditions. The fundamentalassumptionforthis
model isthatthematerialbehaviomcanbe synthesizedby

independentnmdom variablesV. The generalformof this
modelisshown inequation(2),

N a

 -vo)
(2)

where N is the number of environmental effects (temperature,

fatigue, etc.); M/O, t'_ V0 are independent random variables;
M/_Oistbereferencematerialproperties;VF,go.andgate final,
reference, and current environmental variables, respectively;

and Mp is the current materiM property. The exponent a is
determined from available experimental data or can be
estimated from anticipated material behavior duetoa particular
environmental effect.

Perturbed Dynamic Analysis of

Uncertain Systems

The uncertain swactural parameters, such as geometry or
material properties, are random processes in space. "I'ne
uncertain sexvice environments, such as random excitations

and temperature,arerandom processes in time. Furthermore,
the material properties are affected and degraded by
temperature. Because a proabilistic structural analysis by the
f_t-order-second-moment method requires the input to be

independent random variables, a decomposition procedure is
appliedtoexpand the randomprocessintermsofindependent
randomvariablesandtheirrespectivetime-varyingcharacter-

isticfunctions.Some othervariables,suchasinitialboundary

conditions,dampingratio,andrandomamplitudeforharmonic

loads,canalsobe includedintheanalysis.

A dynamicanalysisisperformedrepeatedlytogeneratea

setofparalleltimehistories(dynamicresponses)conesponding

toasmallchangeineachoftheindependentrandomvariables.

These perturbed time histories provide information on how
the uncertainties in the problem parameters propagate through
time and affect the transient responses. The structural responses

R(t), in terms of independent random variables Ui, can be
expressed as

N N

R t)=ao+Y.a::i +Y.
i=l i=!

(3)

where a i and bi are the coefficients computed by using
perturbed time histories in a least-squares procedure. In the

following, a fwst-order-second-moment method is used,
together with the explicit response function determined by



equation (3), to derive the probabilistic information of
structural responses. Also derived are the time-varying (joint)
crossing rate and the probability density function of the first-
passage time.

Statistics of Dynamic Responses

Toe dynamic responses of uncemin structures subjected to
random excitation are also random processes in time.

Although the first- and second-order statistical properties do
not characterize a random process completely, they still

contain the most important information of that process.
Subsequent structural reliability assessments will be based
on this information. In this paper the mean, the standard
deviation, and the autocorrelation function of any random
response process are derived in appendix A together with the

joint probability density function (pdf) of any response and
its derivative. The results are summarized in the following

paragraphs.
The cumulative distribution function (cdf) F, the mean

E[R(t)], and the standard deviation o for any structuralresponse
R(t) (displacement, velocity, acceleration, stresses, etc., at any
time) are

k

= E (5)
i=1

and

(6)

where • is the standard normal cumulative distribution

function; 13is the reliability index from fast-order-second-
moment (FORM) analysis (Lind et al., 1985); k is the number

ofdiscrctizations;andfl_t) is the probability density function
(pdOofR(t).
DefiningX(t)asa random process(stress,displacement,

etc.) and letting R 1 and R 2 be any two responses from X(tl),

X(t l) , X(tl) , X(t2) , _((t2), X(t2), the joint cumulative distribution

function(cdf)F&R_derived in appendix A is

i=l ..... k j=l ..... ! (7)

where (z?yj) are any pair of realizations; kand Iare the number
of discretizations for Rl and R2, respectively; PO"is determined
by equation (AI0); and ¢ is the standard norm_alpdf. Letting

RI=X(t 1) and R2=X(t2), the autocorrelation function of the
random process X(t) is

p( tl ,t2 ) =
Ox0,_x(h)

(8)

wherefX(OX(h)is thejointpdfof x(t ) and x(t2).
rettingRfx(0 andR2-X(0, equation(7)becomesthejoint

oAfof X(t) md X(t). 'l'ne mean rate at which a random process
X(0 crosses a random barrier _(0 can be calculated by

v_(t) = EfX(t_(t)[_(t),i(t)]idk (9)

where fx(t)f_(,) is the joint pdf of X(t) and X(t).

Probability Density Function of

First-Passage Time

The objectiveoftprobabilisticdynamicanalysisistoassess

thereliabilityofstructuressubjectedtorandom excitations.
One ofthefailuremodes concerningthesu-ucturalreliability
isso-calledfast-excursionfailure.Itstatesthatthestructure

failsatthelustexcursionofaresponsetoa giventhreshold.

Theresponsecanbedisplacement,stress,strain,oreigenvahie.
The thresholdcanbe thoughtofasthemaximum clearance

fordisplacementatany time,thematerialstrengthtoresist

crackinitiationcausedby highstress,ortheupperand lower

bounds foreigenvalueswithinwhich responsescan be

minimized. The reliabilityfor such problems isoften

representedby theprobabifitydensityfunctionof thetime

when theresponsefirstcrossesthethreshold([xlfofthefirst-

passagetime).Inthisanalysisthethresholdismodeledasa
deterministictimefunctionand an evolutionaryrandom

process.The probabilitydensityfunctionofthefast-passage

timeiscalculatedby two methods,(I)a crossing-rate-based
method and (2)an equivalent-system-basedmethod,as

describedhere.

Crossing-Rate-Based Method
The probability density function fl(t) of the first-passage

time can be obtained by solving the integral equation

fl(t)+_oK(tlx)fl(X)dx= v_,(t) (I0)

where _(t) is a random barrier process; v_(t) is the mean
crossing rate; K(tl3) is the crossing rate at t conditional on
the fast crossing having occurred at 3. It is an integral
identity expressing the fact that either a barrier crossing at
time t must be the first or the fast crossing must have occurred

at some previous time 3. Thus, the crossing rate can be given
as the sum of two contributions from the left-hand side of

equation (10). The simplest approximation of the pdf of the



first-passage time is firom the approximation K(tlr)- v_t); that
is, the crossing rate at t is assumed to be independent of a prior

first crossingat f. In this case

fl(t)--V_,(t)-V_(t)j_fl('_)dx (II)

In the case where the Poisson hypothesis about independent

barrier crossings is invalid, an imlx_ved approximation for
the kernel K(tlr)is necessary. If the requirement that a barrier
crossing at f should be first is dropped, then

K(tlz)=_ (12)
v_,(z)

The pdfof thefirst-pas_getimeisthencalculatedby the

equation

fl(t)= v_(t)-_o_f'(_) d_ (13)
v_,(x)"

where _(t,_') is the joint mean crossing rate. Letting t-n At
and r=i _, equation (13) can be discretized as

y (nAt)--v (nAt)-E (iAt)' (14)
i=O

The mean crossing rate and the joint mean crossing rate are
derived in appendixes B and C, respectively.

Equivalent-System-Based Method
The probability density function fl(n At) of the f_t-passage

time is defined by the equation

fl(n At)At = l_ob (Positive crossing in time[(n-l)At,nAt]

"-' ]}ClNocryingin

(15)

Assume At is small enough to allow at most one crossing
occurrence in this time interval. Defining the limit state

function gi and its corresponding safety margin Mi by the
equations

N

gi=_(iAt)-X(iAt) M i=_i-_ai,U, i=1 .....n (16)
rffil

where_isarandombarrierprocessandX isarandomresponse

process;_andctarethereliabilityindexandsensitivityfactor,

respectively;Urisastandardizednormallydistributedrandom
variable;andN isthenumberofindependentrandomvariables.

Substitutingequation(16)intoequation(15)gives

.-I )]fl(nAt)to= Prob (g.50_d &n_l>0)N(&i>0 and gi_l>O
i=l

.-, ]_Plob M,jSO)NMi>O (17)
i=l

n-I

The probability event NMi >0 is approximated by a_n
iffil

equivalent event Me(k-l)>O, which is determined by a
reclusive equatioa as follows:

(18)

"r_refore,

fl(n At)At = Prob [Mn 5 0 and Me(n-l)>O ] (19)

The probability on the fight-hand side ofequation(19) will be
calculatedby equation 038).

Numerical Examples and Discussion

The algorithms derived previously were applied to a single-
degree-of-freedom oscillator shown in figure 1. The initial

system parameter K0 was affected by a stationaryrandom
temperature process T(t), and the current system parameter
K(t) was characterized by the following material behavior
model:

FTr-r(t) 
J (20)

where g 0 Tla and TOare independent random variables and
T(t) is a stadouary random process whose covariance kernel is
defined by the equation

Cov [T(t),T(_)]=_re -Cr_-_ (21)

where crTis the standard deviation of T(t) and the constant Cr
is the parameter that conu_ls the smoothness of the random

proc.e_. If CT-0, the random proce._ reduces to a single
random variable. When CT approaches infinity, the random
process becomes a white noise.

The natural frequency of the oscillator is obtained by the
equation

4



te.(t) = _--_- (22)

where M is the lump mass. Substituting equation (20) into

equation (22) gives

o.,,=Jf+o+++-+,,,1°
_._ rp-ro j

(23)

Therefore, ten(t) becomes a random process in time. "13m
equation of the motion is then defined by the equation

j_+ 2_ten(t)_+te2(t)x= F(t) (24)

where [3 is the damping ratio. In the following numerical
examples, these values are assumed: M = 300 000;

ElK O]- 30 000 000; a(K O) ,, 600; E[TFI = 2100; O(TF) = 42;
To = 26_, a = 0.25; E[T(t)] = 1800; a[T(t)l = 36; CT = 0.25;
-o.1o.
The oscillatorissubjectedto an evolutionaryrandom

excitation F(t), which is defined by

F(t)= H(t)S(t) (25)

where H(t) is a deterministic function dcfmed by

t
H(t)=-- t<tc

tc

=I t>tc (26)

as shown in figure 2. Here S(t) is a stationary random process

with mean E[S(t)] = S(t) - 20 and standard deviation o s = 2.
The covariance kernel of S(t) is defined by the equation

(27)

Again, the constant (:75will determine the smoothness of
the random excitation.

A procedure is used next to decompose therandom excitation
S(t) and the random temperature T(t) into a set of independent
random variables and their respective time-varying character-
istic functions. In the time interval [- lt, lt] the process S(t) can
be expanded by the equation

r r °

S(t) = _(t)+ Zbifi(t)+ Zbjf j(t) (28)
i=o j=0

where bi and bj are the zero-mean independent random
variables and

and

! _ - o cos(te_t)

It, ÷m(2te:,)2tei

(29)

cm(te/t)

It+ +sin(2tes/')2tej

(30)

in which tei and tej arc the solution to the transcendental
equations

Cs-tei tan(oA) = 0 (31)

and

tej + Cs tan(teflt ) = 0 (32)

The random temperature T(t) will be decomposed in a similar

way.

Statistics of Dynamic Responses
The covariance of the random excitations is defmed by

equation(27)withCs = 5. This valuewillproducea
nonsmooth random process with a correlation function similar
to that for earthquakerecords. Thirty-six independent random
variables are used to represent this process. The covatiance
oftherandomtemperatureisdefinedby equation(21)with

CT=0.25becausetemperatureoscillatesslowlyintime.Ten
independentrandomvariablesareusedtodefinethisprocess.

The mean,thestandarddeviation,and theautocorreiation

functionof the dynamic displacementwere determined

from equations (4) to (6). The results were compared with
Monte Carlo simulation solutions and are shown in figure 3.
Good agreement is observed. It is also noticed that in the
time interval (0,2), the displacement process X(t) is

nonstationary with varyingmean, standarddeviation, and
autocorreiationfunction.However, theprocessbecomes

stationary after 2 seconds.

Probability Density Function of First-Passage Time
The fLrSt-passage problems have been studied with different

barriersand loading conditions. Two types of random barriers
are used; they are def'med by equations (33) and (34).

Type ,4:

_(t)=_o(I-_-F) (33)



Type B:

 ofl- ' o4)
tv)L re-To J

where _O is the reference barrier, tF is the final time, and litF
is the degradation slope, which reflects the environmental
degradation on thebarriers. The type B random betrier includes
the temperatureeffect more specifically. Two types of random
loading are considered. The first type is the one with Cs in
equation (27) equal to 5. This type of loading is similar to

n_:ords, which are nonsmooth random la'OCeSses.
The second type of loading has C$ = 1, corresponding to a
smooth random process. Two different degradation slopes
are used, 0.02 and 0.15, to represent slow and fast
environmental degradation. The mean reference barriers are
chosen such that they correspond to o and 30 levels of the
response process at t = 0. The statistics of random loads and
barriers for each problem ate listed in table I.

The probabifity density functions of the first-_ge time
were calculated by both the crossing-rate-based method and
the equivalent-system-based method. The results were
compared with Monte C.atlo simulation, as shown in figures 4
to 7. With type A deterministic barriers, a nonsmooth random

excitation (Cs - 5), and a small barrier degradation slope
(0.02), the crossing-rate-based method performed well, as
shown in figures 4(a) and (b), but the equivalent-system-
based method did not. However, the equivalent-system-based

method gave satisfactory results for problems with a large
barrierdegradation slope (0.15), as shown in figures 4(c) and
(d), but the crossing-rate-based method did not. With the
same barrierconditions as for problems in figures 4(a) and Co)

and a smooth random excitation (Cs = 1), the results from the
equivalent-system-based method improved compared with
figures 4(a) and (b) as shown in figures 5(a) and (b). The pdf
of the f'nrst-passagetime predicted by the crossing:rate'based
method for a large &gradation Slope _ improved compared
with figures 4(c) and (d), as shown in figures 5(c) and (d).
Figure 6 shows the pdfof the first-passage time with nonsmooth

random excitation (Cs = 5) and type B random barriers. As
expected, the equivalent-system-based method performed well
for large degradation slopes, as shown in figures 6(c) and (d).
It also gave a satisfactory answer for a small degradation
slope, as shown in figures 6(a) and (b). For problems with

type B random barriers and subjected to smooth random
excitations (¢S = 1), some improvements in the results
predicted by the equivalent-system-based method were aLso
observed for a small degradation slope (0.02), as shown in
figures 7(a) and (b). As usual, it was good for a large

degradation slope, as shown in figures 7(c) and (d).
In general, the crossing-rate-based method is good for

problems with a small degradation slope (0.02) subjected to

nonwhite (CS < 5) excitations and for either low or high
thresholds. The equivalent-system-based method is good for
problems with a large degradation slope (0.15) subjected to

nonwhite (CS < 5) excitations and for either low or high

thresholds. However, when any of the following conditions

are present, the results of the equivalent-system-based method
will co_verge to the solutions by Monte C._Io simulation.
The conditicms are (1) smoother random excitations, (2) more
uncexminties in the _rier, and O) larger degradation slope.
The reasm is statedas follows: In order to have the equivalmt-

system-based method perform well, either the reliability index

13i defined in equation (16) decreases rapidlyor the correlations
between the safety margins are large. Otherwise, a quadratic
equivalent system should be developed to improve the
accuracy. "I'ne degradation slope essentially controls the

decreasing speed of 13tThe degree of uncertainty in tbe ban'iets
and the smoothness of the nmdom excitations, on the other
hand, determine the correlations of the safety margins.

Althoughtheproposedmethodwas applied to a single-
degree-of-freedom oscillator, it can be directly applied to a
multiple-degree-of-freedom system as addressed in the next
section. The computing time required by Monte Carlo
simulation is highly dependent on the degree of freedom of
the finite element model. However, the computing time

required for the proposed methods is dependent on the number
of random variables and is not very sensitive to the degree of
freedem of the finite element model. Therefore, they are
more attractive for problems with complex structures or for

nonlinear problems where analytical solutions do not exist. It
is necessary to point out that the proposed method is not
suitable for problems with white noise excitations because the
infinite number of independent random variables required to
represent this special random process makes the proposed
method inefficient.

Application to Multiple-Degree-of-

Freedom System in Conjunction With
NESSUS

The algorithms derived in this paper were verifw.d by
applying them to a single-degree-of-freedom oscillator.
However, the application to multiple-degree-of-freedom
sWactures is straightforward and is discussed here. The
equation of motion for such a system is defined by

[M]i(,)+ =r(,) (35)

where the mass matrix [M], the damping matrix [C], and the
stiffness matrix [K] can be random processes in space.
Because the explicit response functions in terms of
independent random variables are required for the methods

developed previously, a random process decomposition
procedure is needed to represent the correlated random
process in space by a set of independent random variables.
This can be achieved by using NESSUS/PRE. NESSUS/
PRE is a preprocessor used for the preparation of the statistical
data needed to perform the probabilistic su'uctural analysis.



Itallowstheusertodescribethe uncertainties in the structural

pa_neters (primitive random variables) at nodal points of a
finite element mesh. The uncertainties in these parameters

are specified over this mesh by clef'ruingthe mean value and
the standard deviation of the random variable at each point,

together with an appropriate form of correlation. Correlated
random variables are then decomposed into a set of indepen-

dent vectors by a modal analysis.
The permd_ time histories of any structural response

_ding to a small variation of each indep(mdentrandom
variable can be generated by any finite element code with
transient dynamic capability. The Finite Element Methods in
NESSUS, called NESSUS/FEM, is one of the codes that can
be used for this purpose. The explicit response functions can
then be computed accordingly.

NESSUS/FPI (Fast Probability Integrator) (Wu, 1985)

provides the fast-order-second-moment method necessary for
determining the probabilistic responses and solving the fwst-
passage problems. It is obvious that the newly developed
methods not only utilize NESSUS but also enhance its

capability to perform various dynamic problems. It is worth
pointing out that when the mass, damping, and stiffness
matrices are independent of time, the Wansient dynamic
responses can be obtained in closed forms by a modal
analysis. The perturbed eigenvalues and corresponding
eigenvectors are computed by using an efficient algorithm in
NESSUS/FEM.

Conclusions

i =R(t)-, ¢Xl)

whereR(t)isthesmmurd response(X(t),:C(t),_(t))at
timet,whichisa functionofindependentrandomvariables,

and z is any realization. This limit state is subsequently
transformed into a standardized normally distributed

wobability space and is replaced by a linear safety margin M
through a lust-order-second-moment (FORM) amlysis, where
M is defined by

N

M' - E o;u,
r=l

and where _t and Otrare the reliability index and the sensitivity
factor,respectively,Uris a mnd_dized nonn_lydistributed
random variable; and N is the number of independent random

variables. The probability that g: <0 or R(t) < z is determined
by

where • is the standard normal cumulative distribution

function. The cumulative distribution function (edf) FR for any
structural response R(t) at any time can be generated from
equation (A3) by selecting a number of realization z from an
appropriate response range, as shown in equation (A4).

.....k <A,)

Methods have been developed for the probabilistic dynamic
analysis of uncertainstructures subjected to random excitations
with random environmental effects on the uncertain structural

parameters. The statistics of dynamic analysis such as time-
varying mean, standard deviation, and autocorrelation function
were determined. The f_t-passage problems, with barriers
being deterministic functions and stationary/evolutionary
random processes, were studied. The mean crossing rate and
the joint mean crossing rate were derived. Two methods were
proposed to determine the pdf of the first-passage time. The
crossing-rate-based method is for problems of nonsmooth
random excitations with small uncertainties in the barrierand

small environmental effect on the barrier. The equivalent-

system-based method is for problems of either large barrier
degradation rate, smooth random excitations, or large
uncertainties in the barrier.

APPENDIX A
STATISTICS OF DYNAMIC

RESPONSES

In order to calculate the response statistics, a limit state

function g is first defined by

Iffl+(0isdenotedastheprobabiltydensityfunction(pd0of
R(t),themean and thestandarddeviationof R(t)can be

calculated by the equations

k

E[R(,)]= A"  AS)
i=I

k -- 2o,,c,)=E[,,-RC,)]S,,(+,)A,
i=l

(A6)

The joint cdf FR_R2 is derived as follows: Let R1 and R2 be

any two of X(t), X(x), X(t), X(x), X(t), X(x), etc., where X(t)
is a random response process. Define the limit state functions

gi and gj by

gi= RI - zi, gj= R2 - yj (A7)

where z i and yj are different realizations. Also define their
corresponding linear safety margins M i and Mj by

N N

Mi=_i-EOLpiU,, Mj=_j-EfXrjU , (AS)

r=l r=i



The joint cdf F&_ will be determined by the equation

= Prob(MiS0and Mj <0)

i=1, .... k, j=l .... ,l

where

N

Ply= ____riarj
rffil

(_)

(At0)

Let R1 - X(t) and R2 = X('0 and calculate the autocorrelation
function of X(t) by the equation

Z[,,- ,)]sx/,)xc,)(
ax(,)ax(.,)

(A1I)

where f x(ox(_) is the joint pdf of X(t) and X(x).

APPENDIX B

MEAN CROSSING RATE v_(t)

Themean rateatwhicharandomprocessX(t)crossesarandom

barrier _(t) is determined by the equation

[Average number of positive crossings in time (t,t + At)]

= Prob[Positive slope crossings in time (t,t + At)]

= X(,+ +A,)]
.v; (m)

where _(t) is the barrier. Therefore,

v_(t) A, = p/ 032)

Let t = n At, the crossing rate then becomes

At

where K is determined as follows: The limit state functions

gt and g?+_t are defined by the equations

g'=_(_)-x(_) g'+_'=_(_+At)-xc_+Ao<m>

The corresponding linear safety margins Mr and kl_÷Atin the

standardized normally diswibuted probability space are

?4 /7

M'=_'-y_,e,V,.u'+_'-_'+_'--_,x'e+_'u,_5)
r=l r=l

Substituteequations034)and (BS)intoequation(131)toget

P_c= Pr°b(gt>Oand gt+_t<O)= Pmb(M t>0 and M t+_tSO)

_6)

Define the probability events A, B, A, and B by

A=Mt_O _'=MI>0

B=Mt+_ _O _'=MI+At>0

Then substitute equation (B7) into equation (B6) to get

(BT)

P" = Prob('AB)

ffiProb(B)- Prob(AB)

= Prob(M'*"SO)- Prob(M'*_ <0 and M' <0)

(BS)

(139)

where _ is the standard normal pdf and

N

_.t(lt+AtP =_¢Zr r
r=l

APPENDIX C

JOINT MEAN CROSSING

RATE v_(t,_)

'I'nejoint mean rate at which a random process X crossesa
random barrier _ at times t and g is derived by the following

equations:

[Average number of positive crossings in fime(t,t + At)

and positive crossings in time (r,r+At)]

= Prob[Positive crossings in time (t,t + At) and

positive crossings in time (¢, ¢+ At)]

= Prob[X(t)<__(t)and X(t+At)> _(t+At)and

X(x)-<_('t)and X('c+At)> _('t+/v)]

= Pc" (cD

8



where t > %. Therefore, the joint mean crossing rate is

determined by the following equation with t = n At and
g = i At:.

At,i At)= (c2)
(m)

where P_is determined by lust defining the limit state functions
gl, g_ g3, and g4"

g2 = _(t +At)-X(t +At)

g4 = _(z+At)-X(x+At) (C3)

The corresponding linear safety margins M1, M2, M3, and M4
in the standardized normally distributed probability space are

N

Mif_i-ZariUr i= 1,2,3,4 (C4)
rfl

Then substituting equations (C3) and (C4) into equation (C1)
gives

(C5)
Also the Wobability events are defined as

A =Ml<0 A =Ml>0

B=M2<_O B'= M2> 0

C=M3<-O C=M3>0

D=M(<O D=M(>O (C6)

Substituting equation (C6) into equation (C5) gives

P:=mb(XB o)
= Prob(BD)+ Prob( ABCD)- Prob( ABD)- Prob(BCD)

(C7)

To alleviate the computational difficulty in equation (C7),

two equivalent Wobability events Eel and Ee2 were derived to
replace probability eventsAB and CD, respectively. Therefore,
equation(C7)becomes

Pc"=Prob( BD ) +Prob( EelEe2 )- Prob( EelD ) - Prob( BEt2 )

(c8)

Each term on the right-hand side of the equation can be easily

determined _ equation (A9). The equivalent systems Eel

and Ee2are deteamined as follows: Because the safety margins
M1 and M2 are highly correlated, the probability event AB can
be replacedby an equivalent event Eel (Gollwitzer and
Rachwie,, 1983) in such a way that

=P,ob[M,<
=  ob[E.d (C9)

where Mel is the equivalent linear safety margin defined by

N

-_"_ar Ur (CIO)M,l = 13,1 ,1
rffil

where

<c11)

and

ael= BUr r= I,..., N (C12)

j=!
).

The probability event CD is replaced by equivalent event Ee2
in a similar way.
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TABLE I.--STATISTICS FOR RANDOM LOADS AND BARRIERS

Figure

4(a)
4Co)
4(c)
4(d)
5(a)
5('o)
5(c)
5(d)
6(a)
6(b)
6(c)
6(d)
7(a)
7(b)
7(c)
7(d)

Barrier

type

A

p

B

Random t)m'rie_

Reference barrier

Mean Covariance

0.37 0
.47

l

.37

.47

.37
.47
.37
.47
=58 .10
.74
.58
.74
.58
.74
.58
.74

Degradation
slope

0.02
.02
.15
.15
.02
.02
.15
.15
.02
.02
.15
.15
.02
.02
.15
.15

Loads,

c,i.
_.(27)

1

H0
M

---",A,kAAAAJ_'_

K)')

00oo
Rgure 1 ._Single-degree-of-freedom oscillator subjected

torandomexcitation.

Time

Figure2.--Modulatingfunction/4(0.
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| _ Propo_d msU_d

.I

I/ I I I I I l/ I I I I !
0 1 2 3 4 5 0 I 2 3 4 5

Time, sec

(a) Mean. (b) SUmdard deviation.

1.0 _ 1.:

.s _ .6

_ .4 .4

0

-.2 _ -.2

-.4 I I I I I -.4
0 .2 .4 .6 .8 1.0 0 .,2 .4 .6 .8 1.0

"lime lag, sec

(c) AutocorrelatJon function at I sec. (d) Autocormla_on function at 5 sec.

Rgure 3.--Statistics of displacement in equslJon (24) (C$ in eq. (27), 5).
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- Equivalent-wstem-baNdmethod
Cro_ing-mte-bmmdmethod
Monte Carlo simulation

F
10 0

10-2

10.4

_, (a) Mean reference barrier, 0.37;

barrier degradellon slope, 0.02.

10 o

1o-2 "_/\ \
lO.4 I I

0 1 2 3 4 5 0

(b) Mean reference barrier, 0.47;
barrier degradation slope, 0.02.

\\
I l I',11 _1
1 2 3 4 5

First-passage time, _c

(c) Mean reference barrier, 0.37; (d) Mean reference barrier, 0.47;
barder degradation slope, 0.15. harder degradation slope, 0.15.

Figure 4.--Probability density function of first-passage time (C$ in eq. (27), 5;
coeffident of variation of reference barrier, O;type A deterministic bluffer model).
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F_qulvalent-systlm-bmmdmeO_<l
Crossing-nm-buedmethod
MonteCarlosimulation

2 3 4
I

5

10-2

10--4

0

F H._lV I I I

('o) Mean reference b=uder, 0.47;
barrier degradation slope, 0.02.

0 1 2 3 4 5

First-passage time, Nc

(c) Mean reference barrier, 0.37; (d) Mean reference barder, OA7;
barrier degradation slope, 0.15. barrier degradation slope, 0.15.

Figure 5._mbability density function of first-passage time (Cs in e¢l. (27), 1;
coefficient of variation of reference barrier, 0; type A deterministic barrier model).
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Equlwdent-system-basedmethod
Croasing-mte-basedmethod
Monte Cwto simulation

°r F
10 o

i (e) Mean reference barrier, 0.58;

barrier degradation slope, 0.02. barrier degradation slope, 0.02.

102

10-2 \ _%,

0 1 2 3 4 5 0 1 2 3 4 5

First-passage lime, sec

(c) Mean reference barrier, 0.58; (d) Meen reference barrier, 0.74;
barrier degradation slope, 0.15. barrier degredetJon 8lope, 0.15.

Figure 6.--Probability density function of first-passege lime (Csin eq.
(27), 5; coefficient of variation of reference barrier, 0.1; type B
random barrier model).
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102

Equhndent-lyllem-bM_medlOd
Crosslng-m_-basedmethod
Mon_Carlo=knulatton

100

¢

102

'F
100 --

10-2 --

10-4
0

I
(a) Mean reference barrier, 0.58;

barrier degredel_on slope, 0.02.
(b) Mean reference bluffer, 0.74;

bsn'ler degradation =lope, 0.02.

1 2 3 4 5

If I r f|ll
0 1 2 3 4 5

Rrst-passage dine, sac

(c) Mean reference b_fier, 0.58; Co)Mean reference loqm,fer, 0.74;
barrier degr-,de,_on slope, 0.15. banter degradation Ik)pe, 0.15.

Rgure 7.--Probability density function of fin=t-passage time (Csin eq. (27), 1;
¢x)eff'ctentof variation of refererme barrier, 0.1; type B random barrier
model).
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